FLASH MEMORY

CMOS

$2 \mathrm{M}(256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16)$ BIT

MBM29LV200T-12-x/MBM29LV200B-12-x

- FEATURES

- Single 3.0 V read, program, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands Uses same software commands as E2PROMs
- Package option

48-pin TSOP (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type)
44-pin SOP (Package suffix: PF)

- Minimum 100,000 write/erase cycles
- High performance

120 ns maximum access time

- Sector erase architecture

One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes.
Any combination of sectors can be concurrently erased. Also supports full chip erase

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready-Busy output (RY/BY)

Hardware method for detector of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode.

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
(Continued)
(Continued)
- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Sector protection

Hardware method disables any combination of sectors from program or erase operations

- Temporary sector unprotection

Hardware method enables temporarily any combination of sectors from program or erase operations.

- Extended operating temperature range : $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Please refer to "MBM29LV200T/MBM29LV200B" in detailed specifications.

PACKAGE

48-pin Plastic TSOP

(FPT-48P-M20)

44-pin Plastic SOP

(FPT-44P-M16)

DESCRIPTION

The MBM29LV200T-X/B-X are a 2M-bit, 3.0 V-only Flash memory organized as 256 K bytes of 8 bits each or 128 K words of 16 bits each. The MBM29LV200T-X/B-X are offered in a 48-pin TSOP and 44-pin SOP packages. These devices are designed to be programmed in-system with the standard system 3.0 V Vcc supply. 12.0 V VPp and 5.0 V Vcc are not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers.
The MBM29LV200T-X/B-X offer access times 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable ($\overline{\mathrm{CE}}$), write enable ($\overline{\mathrm{WE}}$) and output enable ($\overline{\mathrm{OE}})$ controls.

The MBM29LV200T-X/B-X are pin and command set compatible with JEDEC standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.
The MBM29LV200T-X/B-X are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.
A sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)
The devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LV200T-X/B-X are erased when shipped from the factory.
The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ_{6}, or the $\mathrm{RY} / \overline{\mathrm{BY}}$ output pin. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.
Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability and cost effectiveness. The MBM29LV200T-X/B-X memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 K byte, two 8 K bytes, one 32 K byte and three 64 K bytes.
- Individual-sector, multiple-sector, or bulk-erase capability.
- Individual or multiple-sector protection is user definable.

	$\begin{gathered} (\times 8) \\ \text { BFFFFH } \end{gathered}$	$\begin{aligned} & (\times 16) \\ & \text { 1FFFFH } \end{aligned}$
16K byte	3BFFFH	
8K byte		1DFFFH
8K byte	39FFFH	1CFFFH
32K byte	37FFFH	1BFFFH
64K byte	2FFFFH	17FFFH
64K byte	1FFFFH	OFFFFH
64K byte	OFFFFH	07FFFH
	00000H	00000 H

MBM29LV200T-X Sector Architecture
MBM29LV200B-X Sector Architecture

PRODUCT LINE UP

Part No.	MBM29LV200T-X/MBM29LV200B-X	
Ordering Part No.	$V_{c c}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.6 \mathrm{~V}}$	$-12-\mathrm{X}$
Max. Address Access Time (ns)	120	
Max. $\overline{\text { CE Access Time (ns) }} \quad 120$		
Max. $\overline{\mathrm{OE}}$ Access Time (ns)	50	

BLOCK DIAGRAM

PIN ASSIGNMENTS

TSOP				SOP (Top View)				
$\begin{aligned} & \mathrm{A}_{15} \square \\ & \mathrm{~A}_{14} \square \end{aligned}$	$\begin{aligned} & 1 \bigcirc \\ & 2 \end{aligned}$	(Marking Side)	48	ص $\begin{aligned} & A_{16} \\ & \text { BYTE }\end{aligned}$	N.C. \square	${ }_{1} \bigcirc$	44	RESET
$\mathrm{A}_{13}{ }^{\text {a }}$	3		46	$\square \mathrm{V}$ Ss	$\overline{\text { BY }}$	2	43	WE
A_{12}	4		45	$\square \mathrm{DQ}_{15} / \mathrm{A}_{-1}$	RY/BY	2	43	WE
A_{11}	5		44	$\square \mathrm{DQ}_{7}$	N.C.	3	42	A_{8}
$\mathrm{A}_{10} \square$	6		43	$\square \mathrm{DQ}_{14}$				
$\mathrm{A}_{9} \square$	7		42	$\square \mathrm{DQ}_{6}$		4	41	A9
$\mathrm{A}_{8} \square$	8		41	$\square \mathrm{DQ}_{13}$				
N.C. \square	9		40	$\square \mathrm{DQ}_{5}$		5	40	A_{10}
N.C. \square	10		39	$\square \mathrm{DQ}_{12}$				
WE	11		38	$\square \mathrm{DQ}_{4}$	A_{5}	6	39	A_{11}
RESET	12	MBM29LV200T-X/MBM29LV200B-X	37	$\square \mathrm{Vcc}$				
N.C. \square	13	Standard Pinout	36	$\square \mathrm{DQ}_{11}$	$\mathrm{A}_{4}-$	7	38	A_{12}
$\begin{array}{r}\text { N.C. } \\ \text { RY/BY } \\ \hline\end{array}$	14		35	$\square \mathrm{DQ}^{\square}$		8	37	
RY/BY $\mathrm{N} . \mathrm{C} . \square$	15		34	$\square \mathrm{DQ}_{10}$		8	37	A13
N.C. ${ }^{\text {N.C. }}$	16		33	$\square^{\square} \mathrm{DQ}_{2}$	$\mathrm{A}_{2} \square$	9	36	A14
A7 \square	18		31	- DQ_{1}				
$\mathrm{A}_{6} \square$	19		30	$\square \mathrm{DQ} 8$		10	35	A_{15}
$\mathrm{A}_{5} \square$	20		29	$\square \mathrm{DQ}_{0}$		11	34	A16
$\mathrm{A}_{4} \square$	21		28	$\square \mathrm{OE}$	A0	11	34	A16
$\mathrm{A}_{3} \square$	22		27	$\square \mathrm{Vss}$	CE	12	33	BYTE
$\mathrm{A}_{2} \square$	23		26	$\square \mathrm{CE}$				
$\mathrm{A}_{1} \square$	24		25	$\square \mathrm{A}_{0}$	Vss	13	32	Vss
		FPT-48P-M19			OE \square	14	31	DQ ${ }_{15} / \mathrm{A}_{-1}$
$A_{1}[$	24	(Marking Side)	25	$\square \mathrm{A}_{0}$	DQ0 \square	15	30	DQ7
$\mathrm{A}_{2} \square$	23		26	$\square \overline{C E}$	DQ8	16	29	DQ14
$\mathrm{A}_{3} \square$	22		27	$\square \mathrm{Vss}$				DQ14
$\mathrm{A}_{4} \mathrm{~A}_{5} \square$	21 20		28	- $\mathrm{OE}^{\text {D }}$	$\mathrm{DQ}_{1} \square$	17	28	DQ6
$\mathrm{A}_{4} \mathrm{~A}_{6} \square$	20 19		29 30	- ${ }^{\text {DQ }}$ -	DQ9			
$\mathrm{A}_{7} \square$	18		31	$\square \mathrm{DQ}_{1}$	DQ9	18	27	DQ13
N.C. ${ }^{\text {N }}$	17		32	\square DQ9	DQ2 \square	19	26	DQ5
$\xrightarrow[\text { RY/BY. }]{\text { N. }}$	16		33	$\square \mathrm{DQ}_{2}$				
RY/BY \square	15		34	$\square \mathrm{DQ}_{10}$	DQ_{10}	20	25	DQ_{12}
N.C. \square	14		35	$\square \mathrm{DQ}_{3}$				
$\frac{\text { N.C. }}{\text { RESET }} \square$	13	MBM29LV200T-X/MBM29LV200B-X	36	$\square \mathrm{DQ}_{11}$	$\mathrm{DQ}_{3} \square$	21	24	DQ4
RESET WE \square	12	Reverse Pinout	37	$\square \mathrm{Vcc}$	DQ11		23	Vcc
W.C. \square	11 10		38 39	= ${ }^{\text {DQ }}{ }^{\text {DQ }}$	DQ11		23	Vcc
N.C. \square	9		40	$\square \mathrm{DQ}_{5}$		FPT		
$\mathrm{A}_{8} \square$	8		41	$\square \mathrm{DQ}_{13}$				
$\mathrm{A}_{9} \square$	7		42	$\square \mathrm{DQ}_{6}$				
$\mathrm{A}_{10} \square$	6		43	$\square \mathrm{DQ}_{14}$				
$\mathrm{A}_{11} \square$	5		44	$\square \mathrm{DQ}_{7}$				
$\mathrm{A}_{12} \square$	4		45	$\square \mathrm{DQ}_{15} / \mathrm{A}_{-1}$				
$\mathrm{A}_{13} \square$	3		46	$\square \mathrm{V}$ ss				
$\mathrm{A}_{14} \square$	2		47	\square BYTE				
$A_{15} \square$	$1 \bigcirc$		48	$\square \mathrm{A}_{16}$				

FPT-48P-M20

LOGIC SYMBOL

Table 1 MBM29LV200T-X/MBM29LV200B-X Pin Configuration

Pin	Function
$\mathrm{A}_{-1}, \mathrm{~A}_{0}$ to A_{16}	Address Inputs
DQ ${ }_{0}$ to DQ_{15}	Data Inputs/Outputs
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
WE	Write Enable
RY/ $\overline{B Y}$	Ready-Busy Output
RESET	Hardware Reset Pin/Sector Protection Unlock
BYTE	Selects 8 -bit or 16-bit mode
N.C.	No Internal Connection
Vss	Device Ground
Vcc	Device Power Supply

ORDERING INFORMATION

Standard Products

Fujitsu standard products are available in several packages. The order number is formed by a combination of:

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except A9, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ (Note	-0.5 V to Vcc+0.5 V
Vcc (Note 1)	-0.5 V to +5.5 V
A9, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ (Note 2)	-0.5 V to +13.0 V

Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ pins are -0.5 V . During voltage transitions, $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET pins may negative overshoot V ss to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET pins are +13.0 V which may overshoot to 14.0 V for periods of up to 20 ns.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING RANGES

Industrial Devices
Ambient Temperature (TA) .. $20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ to +3.6 V

Recommended operating ranges define those limits between which the functionality of the devices are guaranteed.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MAXIMUM OVERSHOOT

Figure 1 Maximum Negative Overshoot Waveform

Figure 2 Maximum Positive Overshoot Waveform

Note: This waveform is applied for $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET.

Figure 3 Maximum Positive Overshoot Waveform

DC CHARACTERISTICS

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
1 L	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc, }} \mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cc }}$ Max.		-1.0	+1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	$V_{\text {out }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\text {cc }}=\mathrm{V}_{c c}$ Max.		-1.0	+1.0	$\mu \mathrm{A}$
Іıт	Aя, $\overline{O E}, \overline{R E S E T}$ Inputs Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max} ., \mathrm{B} \\ & \mathrm{~A}_{\mathrm{o}}, \mathrm{OE}, \text { RESET } \end{aligned}=12.5 \mathrm{~V}$		-	80	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 1)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	Byte	-	30	mA
			Word		35	
Icc2	V cc Active Current (Note 2)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		-	35	mA
Icca	Vcc Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \operatorname{Max.}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V} \end{aligned}$		-	50	$\mu \mathrm{A}$
Icc4	Vcc Current (Standby, Reset)	$\frac{\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Vc} \text { Max., }}{\mathrm{RESET}=\mathrm{Vss} \pm 0.3 \mathrm{~V}}$		-	50	$\mu \mathrm{A}$
VIL	Input Low Level	-		-0.5	0.6	V
V_{H}	Input High Level	-		2.0	$\mathrm{V} c \mathrm{c}+0.3$	V
VID	Voltage for Autoselect and Sector Protection (A9, OE, RESET)	-		11.5	12.5	V
VoL	Output Low Voltage Level	$\mathrm{loL}=4.0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{V}_{\text {cc }} \mathrm{Min}$.		-	0.45	V
Vor1	Output High Voltage Level	$\mathrm{l}_{\mathrm{O}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=\mathrm{V}_{\text {cc }} \mathrm{Min}$.		2.4	-	V
Vон2		$\mathrm{l}_{\mathrm{oH}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min} .$		Vcc-0.4	-	V
Vıко	Low Vcc Lock-Out Voltage	-		2.3	2.5	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$, with $\overline{\mathrm{OE}}$ at V_{IH}.
2. Icc active while Embedded Algorithm (program or erase) is in progress.

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		$\begin{aligned} & -12-X \\ & \text { (Note) } \end{aligned}$	Unit
JEDEC	Standard					
tavav	trc	Read Cycle Time	-	Min.	120	ns
tavav	tacc	Address to Output Delay	$\begin{aligned} & \overline{C E}=V_{I L} \\ & \overline{O E}=V_{I L} \end{aligned}$	Max.	120	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Max.	120	ns
talav	toe	Output Enable to Output Delay	-	Max.	50	ns
tehaz	tDF	Chip Enable to Output High-Z	-	Max.	30	ns
tghaz	tof	Output Enable to Output High-Z	-	Max.	30	ns
taxax	toн	Output Hold Time From Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	-	Min.	0	ns
-	treadr	$\overline{\text { RESET Pin Low to Read Mode }}$	-	Max.	20	$\mu \mathrm{s}$
-	$\begin{aligned} & \text { telfL } \\ & \text { telfy } \end{aligned}$	$\overline{\text { CE }}$ or BYTE Switching Low or High	-	Max.	5	ns

Notes: Test Conditions: Output Load: 1TTL gate and 100 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level
Input: 1.5 V
Output: 1.5 V

Notes: $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ including jig capacitance
Figure 4 Test Conditions

- Write/Erase/Program Operations

Alternate WE Controlled Writes

Parameter Symbols		Description			-12-X	Unit
JEDEC	Standard					
tavav	twc	Write Cycle Time		Min.	120	ns
tavwl	tAs	Address Setup Time		Min.	0	ns
twLax	$\mathrm{taH}^{\text {a }}$	Address Hold Time		Min.	50	ns
tovwh	tos	Data Setup Time		Min.	50	ns
twhdx	toh	Data Hold Time		Min.	0	ns
-	toes	Output Enable Setup Time		Min.	0	ns
-	toer	Output Enable Hold Time	Read	Min.	0	ns
			Toggle and Data Polling	Min.	10	ns
tahwi	tahwi	Read Recover Time Before Write		Min.	0	ns
teLw	tcs	$\overline{\text { CE Setup Time }}$		Min.	0	ns
twher	tch	CE Hold Time		Min.	0	ns
twlwh	twp	Write Pulse Width		Min.	50	ns
twhwL	twPH	Write Pulse Width High		Min.	30	ns
twhwhi	twhwhi	Byte Programming Operation		Typ.	8	$\mu \mathrm{s}$
twHwH2	twhwHz	Sector Erase Operation (Note 1)		Typ.	1	sec
-	tvcs	Vcc Setup Time		Min.	50	$\mu \mathrm{s}$
-	tvLht	Voltage Transition Time (Note 2)		Min.	4	$\mu \mathrm{s}$
-	twpp	Write Pulse Width (Note 2)		Min.	100	$\mu \mathrm{s}$
-	toesp	$\overline{\text { OE Setup Time to } \overline{W E} \text { Active (Note 2) }}$		Min.	4	$\mu \mathrm{s}$
-	tcsp	$\overline{\mathrm{CE}}$ Setup Time to WE Active (Note 2)		Min.	4	$\mu \mathrm{s}$
-	trb	Recover Time From RY/BY		Min.	0	ns
-	trp	$\overline{\text { RESET Pulse Width }}$		Min.	500	ns
-	trH	$\overline{\text { RESET Hold Time Before Read }}$		Min.	500	ns
-	tFloz	BYTE Switching Low to Output High-Z		Max.	40	ns
-	tBusy	Program/Erase Valid to RY/BY Delay		Min.	90	ns

Notes: 1. This does not include the preprogramming time.
2. These timings are for Sector Protection operation.

MBM29LV200T/MBM29LV200B-12-x

- Write/Erase/Program Operations

Alternate CE Controlled Writes

Parameter Symbols		Description			-12-X	Unit
JEDEC	Standard					
tavav	twc	Write Cycle Time		Min.	120	ns
tavel	tas	Address Setup Time		Min.	0	ns
telax	taH	Address Hold Time		Min.	50	ns
toveh	tos	Data Setup Time		Min.	50	ns
tehdx	toh	Data Hold Time		Min.	0	ns
-	toes	Output Enable Setup Time		Min.	0	ns
-	toen	Output Enable Hold Time	Read	Min.	0	ns
			Toggle and Data Polling	Min.	10	ns
tghel	tghel	Read Recover Time Before Write		Min.	0	ns
twLEL	tws	WE Setup Time		Min.	0	ns
terwh	twh	$\overline{\text { WE Hold Time }}$		Min.	0	ns
teleh	tcp	$\overline{\mathrm{CE}}$ Pulse Width		Min.	50	ns
tehel	tcPH	$\overline{\text { CE Pulse Width High }}$		Min.	30	ns
twhwh 1	twhwh 1	Byte Programming Operation		Typ.	8	$\mu \mathrm{s}$
twHwH2	twhwH2	Sector Erase Operation (Note)		Typ.	1	sec
-	tvcs	Vcc Setup Time		Min.	50	$\mu \mathrm{s}$
-	trB	Recover Time From RY/BY		Min.	0	ns
-	trp	$\overline{\text { RESET Pulse Width }}$		Min.	500	ns
-	trH	$\overline{\text { RESET Hold Time Before Read }}$		Min.	500	ns
-	tFlaz	BYTE Switching Low to Output High-Z		Max.	40	ns
-	tBusY	Program/Erase Valid to RY/BY Delay		Min.	90	ns

Note: This does not include the preprogramming time.

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments
	Min.	Typ.	Max.		
Sector Erase Time	-	1	15	sec	Excludes programming time prior to erasure
Word Programming Time	-	16	5,200	$\mu \mathrm{S}$	Excludes system-level overhead
Byte Programming Time	-	8	3,600		
Chip Programming Time	-	2.1	T.B.D	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycles	-

TSOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7.5	9	pF
$\mathrm{Cout}^{\text {Sout }}$	Output Capacitance	$\mathrm{V}_{\text {out }}=0$	8	10	pF
$\mathrm{C}_{\mathbb{N} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	9.5	12.5	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7.5	9	pF
$\mathrm{Cout}^{\text {O }}$	Output Capacitance	$\mathrm{V}_{\text {out }}=0$	8	10	pF
$\mathrm{C}_{\mathbb{N} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	9.5	12.5	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

